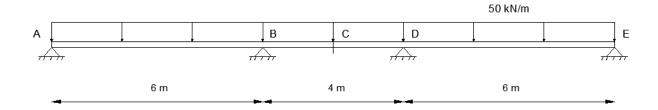
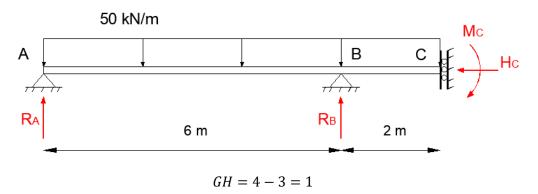


RESOLUCIÓN DE VIGA CONTINUA DE 3 VANOS MEDIANTE CÁLCULO TRADICIONAL (MÉTODOS DE MOHR Y CROSS). CONTRASTE DE RESULTADOS CON SOFTWARE DE CÁLCULO STATIK

Nota de los autores:

Este documento es únicamente de carácter didáctico. Se ha pretendido en todo momento describir el cálculo "paso a paso" para la total comprensión del mismo.

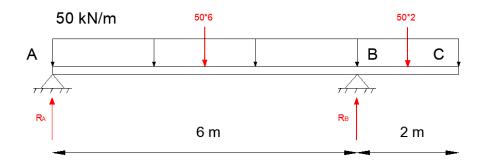

Queda expresamente prohibida la copia, reproducción o difusión mediante cualquier medio del presente documento para fines lucrativos.

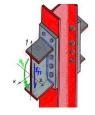

1. Determinación de las reacciones de la viga adjunta

1.1. Método de Morh-Bresse

Lo primero que vamos a hacer es determinar si la estructura es isostática o hiperestática.

Para mayor facilidad de trabajo y por ser una estructura simétrica de carga y forma, nos vamos a quedar con la mitad de la estructura aplicando los conceptos de simetría.

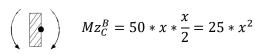

Como se puede ver, estamos frente a una estructura hiperestática de grado 1, lo que quiere decir que, además de las ecuaciones de la estática necesitaremos alguna ecuación más para hacer el sistema compatible.

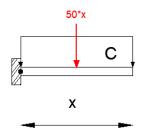

La incógnita hiperestática elegida será $M_{\mathcal{C}}$.

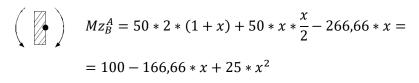
Empezamos por dividir el cálculo mediante estados independientes:

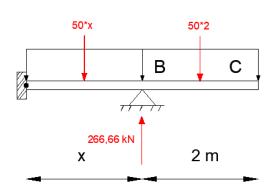
ESTADO I

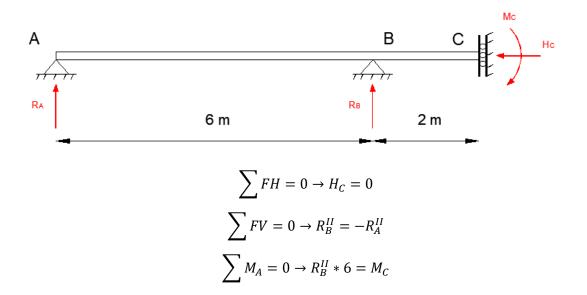
Calculamos las reacciones y leyes de flectores:

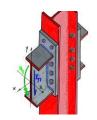





$$\sum M_B = 0 \to R_B^I * 6 = 6 * 50 * 3 + 100 * 7 \to R_B^I = 266,66 \text{ kN}$$
$$\sum FV = 0 \to R_A^I + R_B^I = 60 * 50 + 100 \to R_A^I = 133,34$$

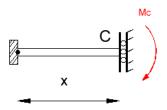

TRAMO CB: $0 \le x \le 2$

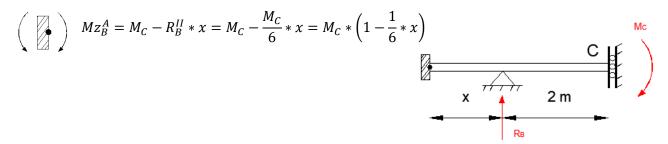

TRAMO BA: $0 \le x \le 6$



ESTADO II

Calculamos las reacciones y ley de flectores:





TRAMO CB: $0 \le x \le 2$

$$\left(\begin{array}{c} \\ \\ \end{array}\right) \quad Mz_C^B = M_C$$

TRAMO BA: $0 \le x \le 2$

Ahora establecemos las ecuaciones de compatibilidad para resolver el hiperestatismo:

$$\Theta_{C} = 0$$

$$\Theta_{B} = \Theta_{C} + \int_{C}^{B} \chi * ds \rightarrow$$

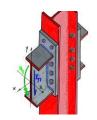
$$\Theta_{B} = \frac{1}{EI} * \int_{0}^{2} -(25 * x^{2}) * dx + \int_{0}^{2} -(M_{C}) * dx \rightarrow \Theta_{B} = -66,66 - 2 * M_{C}$$

$$V_{A} = 0$$

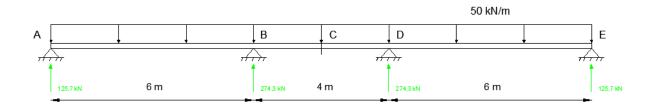
$$V_{A} = V_{B} + \Theta_{B} * d + \int_{A}^{B} \chi * d(s) * ds \rightarrow$$

$$0 = (-66,66 - 2 * M_{C}) * 6 + \frac{1}{EI} * \int_{0}^{6} -(100 - 166,66 * x + 25 * x^{2}) * (6 - x) * dx +$$

$$+ \frac{1}{EI} * \int_{0}^{6} -M_{C} * \left(1 - \frac{1}{6} * x\right) * (6 - x) * dx \rightarrow 0 = -400 - 12 * M_{C} + 1500 - 12 * M_{C}$$

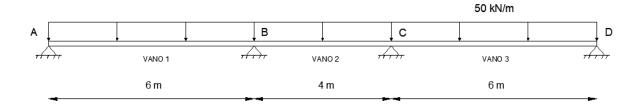

$$\rightarrow M_{C} = 45,83$$

Si sustituimos el valor de " $M_{\mathcal{C}}$ " en el Estado 2, nos quedaría:


$$R_B^{II} * 6 = 45,83 \rightarrow R_B^{II} = 7,64 \text{ kN}$$

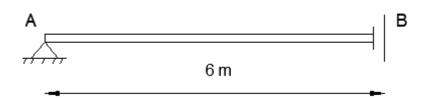
 $R_B^{II} = -R_A^{II} \rightarrow R_A^{II} = -7,64 \text{ kN}$

Si hacemos la suma algebraica de las reacciones en los 2 estados obtenemos las reacciones definitivas que andamos buscando, y, por simetría, las del apoyo "D" y "E"


$$R_A = R_A^I + R_A^{II} = 133,34 - 7,64 \rightarrow R_A = R_E = 125,7 \text{ kN}$$

 $R_B = R_B^I + R_B^{II} = 266,66 + 7,64 \rightarrow R_A = R_D = 274,3 \text{ kN}$

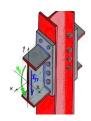
Las reacciones quedarían:



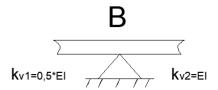
1.2. Método de Cross

Lo primero que haremos será el estudio de rigideces. Como ya dijimos anteriormente es una estructura simétrica de carga y forma.

VANO 1


$$k_{v1} = k_{v3} = \frac{3 * EI}{L} = 0.5 * EI$$

VANO 2

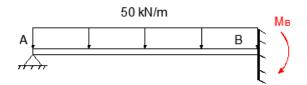


$$k_{v2} = \frac{4 * EI}{L} = EI$$

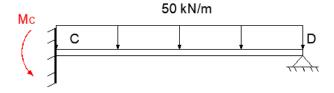
NOTA: Los apoyos en "B" y "C" no son empotramientos sino sustentaciones elásticas

A continuación, calcularemos los coeficientes de reparto:

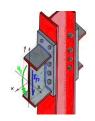
$$\sum k_i = k_{v1} + k_{v2} = 0.5 * EI + EI = 1.5 * EI$$

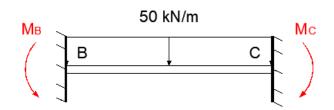

$$C_1^B = \frac{k_{v1}}{\sum k_i} = \frac{0.5 * EI}{1.5 * EI} = \frac{1}{3}$$

$$C_2^B = \frac{k_{v2}}{\sum k_i} = \frac{EI}{1.5 * EI} = \frac{2}{3}$$

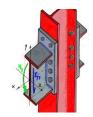

Siempre se debe de cumplir que el sumatorio de los coeficientes de reparto sea igual a la unidad:

$$C_1^B + C_2^B = \frac{1}{3} + \frac{2}{3} = 1$$


Calculamos los momentos de empotramiento perfecto en los vanos 1 y 3, y en el vano intermedio 2:

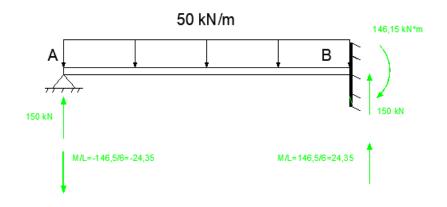

$$M_{o,1}^B = \frac{P * L^2}{8} = \frac{50 * 6^2}{8} = +225 \, kN * m$$

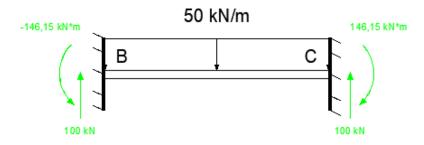
$$M_{o,3}^{C} = -\frac{P * L^{2}}{8} = -\frac{50 * 6^{2}}{8} = -225 \, kN * m$$



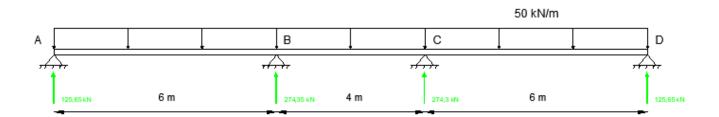
$$M_{o,2}^B = -\frac{P*L^2}{12} = -\frac{50*4^2}{12} = -66,67 \text{ kN}*m$$

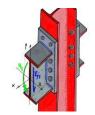
$$M_{o,2}^{c} = \frac{P * L^{2}}{12} = \frac{50 * 4^{2}}{12} = 66,67 \text{ kN} * m$$


Ahora procederemos al reparto de momentos:



Por último, equilibramos los nudos:



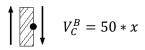

$$R_A = R_D = 150 - 24,35 = 125,65 \text{ kN}$$

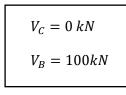
 $R_B^1 = 150 + 24,35 = 174,35 \text{ kN}$

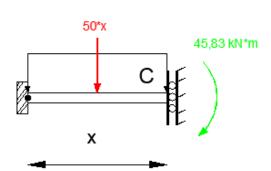
$$R_B^2 = 100 \ kN$$

$$R_B = R_C = R_B^1 + R_B^2 = 174,35 + 100 = 274,35 \ kN$$

Las reacciones quedarían:



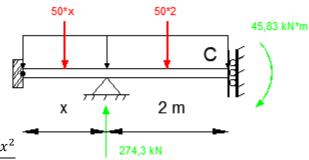




2. Determinación del diagrama de esfuerzos cortantes y flectores

TRAMO CB: $0 \le x \le 2$

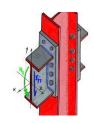
$$Mz_C = 45,83 \ kN * m$$


$$Mz_B=145,83\;kN*m$$

TRAMO BA: $0 \le x \le 6$

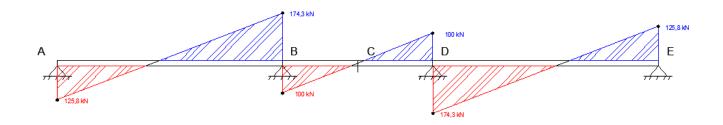
$$V_B^A = 50 * x - 50 * 2 - 274,3$$

$$V_B = -174,3 \ kN$$
$$V_A = 125,7 \ kN$$

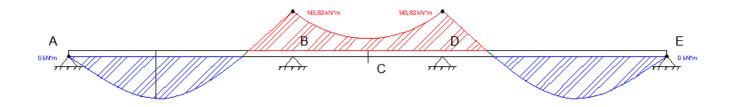


$$Mz_B^A = 274.3 * x - 45.83 - 50 * 2 * (1 + x) - 50 * \frac{x^2}{2}$$

$$Mz_B = -145,83 \ kN * m$$


$$Mz_A = 0 \ kN * m$$

NOTA: Aunque las reacciones obtenidas por ambos métodos son casi idénticas, hemos optado por calcular los diagramas de esfuerzos con las reacciones que nos ha proporcionado el método de Mohr.



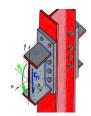

Los diagramas son los que se representan a continuación:

Diagrama de cortantes

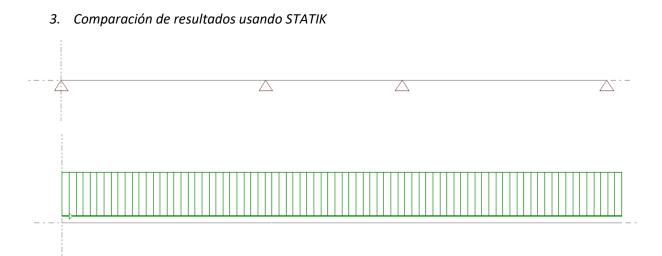
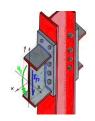
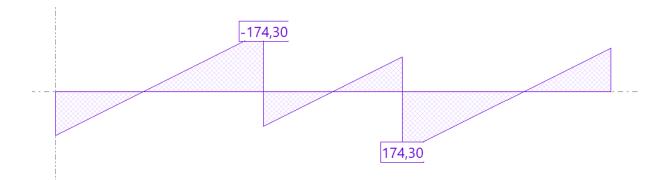


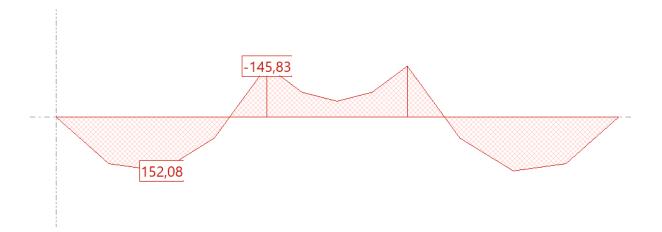
Diagrama de flectores



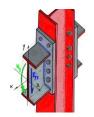

	RESUMEN CÁLCULOS [REACCIONES]									
TABLE: Joint Reactions						Cálculo tradicional				
Nudo	Carga	Fx	Fz	Му	Fx	Fz	Му			
		KN	KN	KN-m	KN	KN	KN-m			
K_1	SC	0,00	125,69	0,00	0,00	125,65	0,00			
K_2	SC	0,00	274,31	0,00	0,00	274,35	0,00			
K_3	SC	0,00	274,31	0,00	0,00	274,35	0,00			
K_4	SC	0,00	125,69	0,00	0,00	125,65	0,00			

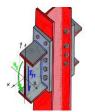
NOTA: Los signos de las reacciones y esfuerzos dependen del convenio empleado

Diagrama de cortantes



RESUMEN CÁLCULOS [CORTANTE]								
SOLICI	TACIONES	tı	Cálculo radicional	Variación				
Parra	Vz	x	Vx	%				
Barra	KN	m	KN	76				
S_1	125,69	0	125,80	0,09				
S_1	-174,30	6	174,30	N/A				
S_2	100,00	6	100,00	N/A				
S_2	-100,00	10	100,00	N/A				
S_3	-174,30	10	174,30	N/A				
S_3	125,69	16	125,80	0,09				




Diagrama de flectores

RESUMEN CÁLCULOS [FLECTOR]									
SOLICI	TACIONES	Cálculo tradicional		Variación					
Вонно	Mz	х	Mz	%					
Barra	KN	m	KN	76					
S_1	0,00	0	0,00	N/A					
S_1	-145,83	6	145,83	N/A					
S_2	-145,83	6	145,83	N/A					
S_2	-145,83	10	145,83	N/A					
S_3	-145,83	10	145,83	N/A					
S_3	0,00	16	0,00	N/A					

